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March 8-10, 2000 NSF-sponsored Workshop on 
 

Dynamic Data Driven Application Systems 
"Creating a dynamic and symbiotic coupling of application/simulations with  

measurements/experiments" 
 
Preface 
 
    The primary objective of this workshop was to explore research opportunities leading to the 
creation and enablement of a new generation of dynamic/adaptive applications.  The novel 
capabilities to be created are application simulations that can dynamically accept and respond to 
"online" field data and measurements and/or can control such measurements1. This synergistic 
and symbiotic feedback control loop between applications/simulations and measurements is a 
novel technical direction that can open new domains in the capabilities of simulations with high 
potential payoff, and create applications with new and enhanced capabilities. It has the potential 
to transform the way science and engineering are done, and induce a major beneficial impact in 
the way many functions in our society are conducted, such as manufacturing, commerce, 
transportation, hazard prediction/management, and medicine, to name a few.  
 
    Traditional application simulations are conducted with static data inputs.  In the new dynamic, 
data driven application systems envisioned here, field collected data will be used in an "online" 
fashion to steer the simulations and vice versa the simulations could be used to control 
experiments or other field measurements.  Thus the applications/simulations and the experiments 
(or field data) become a symbiotic feedback system rather than the usual static, disjoint and 
serialized approaches.   The purpose of the workshop was to examine the technical challenges 
and research areas that need to be fostered to enable such capabilities.  What are the 
requirements in the applications' level for enabling this kind of dynamic feedback and control 
loop?  What are the requirements in the applications' algorithms for the algorithms to be 
amenable to perturbations by the dynamic data inputs? What are the challenges and technology 
needed in the computer systems areas to support such environments?  The new set of 
applications will create a rich set of new challenges and new class of problems for the 
applications and systems' researchers to address.  
 
    Such challenges clearly present the need for a synergistic multidisciplinary research between 
applications and systems' and algorithms' areas. This research scope has the potential to help 
establish stronger and more systematic collaborations between the applications' researchers and 
the engineering, math and computer sciences researchers. How can such multidisciplinary 
research be programmatically fostered and supported in an effective way? How can this 
multidisciplinary research form a clear focus for many of the activities developed in existing 
individual programs supported in NSF? Past investments provide a basis to address the more 
challenging research required to enable the new paradigm fostered here. How can the research 
performed and the technologies developed under existing NSF efforts be poised to provide a 
relevant basis upon which the research for symbiotic measurement and simulation systems can 
springboard?   How can the research focus for this new paradigm serve as a necessary adjunct 
of existing programs?  
 
    Many application areas can be envisioned benefiting or enabled from this new paradigm.  
Many are of interest to the research community supported by NSF. Representative examples 
were addressed in the workshop to illustrate the potential impact that this kind of research can 
have.  The capabilities discussed here, are relevant not only to applications of interest to the NSF 
funded research community, but also to applications of interest to other agencies.  Furthermore, 
such new directions can provide a very positive impact with respect to the educational 

 
1 Darema, Introduction to DDDAS (see presentation slides).  When application is referenced alone, we 
mean it to include all related application simulations as well as all other dynamic applications. 
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component, by providing the opportunities for students to work in some novel, exciting, and 
multidisciplinary projects.    
 
    The workshop took place at NSFand assembled about 80 scientists, representing relevant 
disciplines.  The workshop addressed the problems, needs, possibilities and opportunities for 
such multidisciplinary research and education. These issues were discussed in the format of 
plenary sessions and breakout groups, along the areas of applications, algorithms, and systems' 
software technologies2.  The present report summarizes the discussions that took place during 
the workshop, in order to make them available to the wider community, and to also serve as 
guidance for NSF's programmatic considerations.  
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Executive Summary  
 
 
    At a February 17, 2000 congressional briefing, meteorologists were asked why they missed 
predicting the track and magnitude of a major storm in January 24-25, 2000,  that blanketed 
major cities from South Carolina to New England.  One of the reasons cited by the scientists is 
that computer models (simulations) were not geared to incorporate changing conditions (like 
prevalent winds) as the many hours long computer simulations proceeded.  
 
    Even as the present report was in preparation, on May 7, 2000, the national park service 
started a controlled burn near Los Alamos National Laboratory.  Within a day, the fire was labeled 
a wildfire.  Once again, the existing methodologies were unable to simulate what the behavior of 
the fire based upon real-time changing conditions, and the emergency response agencies were 
thus unable to take appropriate and effective actions to limit the propagation of the fire.   
 
    These  examples are neither isolated  nor unique.  Typically, applications and simulations we 
use today, only allow data inputs that are fixed when the application/simulation is launched.  
Traditionally, these processes are disjoint and serialized, not synchronized and co-operative. This 
lack of ability to dynamically inject data into simulations and other applications, as these 
applications execute, limits the analysis and predictive capabilities of these applications. Needs 
for such dynamic applications are already emerging in business, engineering, and scientific 
processes, analysis, and design.   A number of examples of such applications are referenced in 
the main body of this report. 
 
The New Paradigm:  In the new dynamic data driven application systems framework envisioned 
here, the simulations and the experiments (or field data) become a symbiotic feedback control 
system. 

 
    The primary objective of the workshop discussions was to identify research opportunities for 
the development of applications and system’s software technology enabling this new generation 
of dynamic/adaptive applications.  The novel capabilities sought, are simulation applications that 
can dynamically accept and respond to field data and measurements, and/or can control such 
measurements in a dynamic manner.  This is a new dimension in the capabilities of applications.   
 
    The needs for enabling the new paradigm push for research leading to leap ahead technology 
capabilities.  For example, to enable the kinds of application simulations discussed here, progress 
is needed in application methods and interfaces,  and in algorithms that are tolerant to 
dynamically steering the simulation.  Therefore research in the development of new such 
methods and algorithms for the specific application areas will be needed.  Furthermore, the 
dynamic application requirements will dictate computing systems’ support that includes systems’ 
software technologies, such as active middleware services for real-time, dynamic reconfiguration 
capabilities, resource discovery, load balancing, security, fault tolerance, quality of service, and 
dynamic interfaces with field measurement systems.   Currently the underlying systems’ 
technology is not geared to support the dynamic requirements of these kinds of applications.  
 
    Therefore research is needed on: applications, for developing the dynamic, data driven  
application technologies, algorithms tolerant to perturbations of dynamic data injection and 
steering, and systems software for supporting the dynamic environments of concern here.   In 
turn, research and development on these technologies forms the need for synergistic 
multidisciplinary research between applications areas with systems and algorithms research, and 
involving researchers in engineering, basic sciences, math, and computer sciences, in 
multidisciplinary teams as well as individual research efforts. 
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    The workshop3 included plenary presentations on application case examples where the new 
paradigm creates additional capabilities and benefits.  The working groups were organized 
around the themes of: applications, algorithms, and (computer) systems. Charges4 were provided 
to the participants to drive their discussions.   Specifically the workshop addressed the issues and 
possible research directions for areas such as the following: 
 

Data driven components, data assimilation5 and feature extractions, model enhancement for 
local resolution, optimization and inverse problems, inverse problems for fine scale 
application models, computation/model and measurement system interaction, computation 
and computational infrastructure interaction, time dependency and real time aspects, data 
streams in addition to data sets, uncertainties in the data, multiple scales and model 
resolution, model interactions and software agents, interactive visualization and steering, 
combining local and global knowledge, exploiting new generations of sensors, information 
services, resource, and systems management under physical systems and real time systems 
constraints, application management and dynamic application component assembly, dynamic 
programming environments, security, fault tolerance, and economic models for the 
computational infrastructure. 

 
A more detailed discussion of these research areas is provided in the main body of the 
report. 

 
    In the main body of this report, we also give specific examples of the kinds of applications that 
were discussed at the workshop.  Many of the application examples presented here are of 
interest to the research community currently supported by NSF.  and they are provided to 
elucidate the potential impact that this kind of initiative can have, rather than being an exhaustive 
or limiting list. In addition, applications that can benefit from the DDDAS paradigm are not only 
the ones addressed by the research community funded by NSF, but also those of other agencies 
(e.g., DARPA, DOE, and NASA) who were represented at the workshop. 
 
    Multidisciplinary research projects and multidisciplinary teams will be crucial  for developing, in 
an effective manner, the necessary novel methods, frameworks, and tools, that are required to 
realize DDDAS. Furthermore, this kind of multidisciplinary research will have a very positive 
impact with respect to the educational component, by providing the opportunities for students to 
work in some novel, exciting, and multidisciplinary projects.  
 
    Why now is the time for developing such capabilities? DDDAS is a powerful and new 
paradigm, requiring advances on several technologies.  However over the recent years there has 
been progress in a number of technology areas that makes the realization of DDDAS possible  
These include advances in applications and algorithms for parallel and distributed platforms, 
computational steering and visualization, computing, networking, sensors and data collection, and 
systems software technologies.  These are some of the recent advances that can  help enabling 
the new paradigm of DDDAS.   It is necessary however to endow these technologies with 
advanced and enhanced capabilities to develop the state of the art in DDDAS, which in turn will 
enable applications that are more powerful, effective, accurate and robust than what is currently 
available today.  Productivity and services will be improved as a direct result of this new synergy 
and advances in technology.  
 

 
3 See the workshop agenda in Appendix 1. 
4 See the list of charges in Appendix 2. 
5  DDDAS is not tautonymous with data assimilation (DA).  In DA data from multiple sources can be fused 
and used as inputs into an application. However DA is a static process, in that these sources of the data  are 
fixed when the application is launched.  While data assimilation can be exploited in DDDAS environments, 
the difference between DA and DDDAS is that in DDDAS the data injection in the application is dynamic 
(at runtime).  In addition, in the DDDAS paradigm, the applications will be empowered to control the 
measurements’ processes  
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If this initiative is successful, a revolutionary change can be expected in how applications and 
simulations involving time dependent data are designed and what they can accomplish.  We can 
expect advances perhaps equivalent to what happened to the manufacturing industry after 
computers were introduced in the 1950's.  With the DDDAS capabilities many fields will be 
positively affected or revolutionized, including those in the basic sciences, biology, engineering, 
and the social sciences.  An initiative in DDDAS will have relevance and will affect all areas of 
NSF. 
 
 
    The multidisciplinary DDDAS initiative will form a clear focus for many of the activities 
developed in existing individual programs.  In particular, research performed and technologies 
developed under a number of existing initiatives provide the foundation upon which to build the 
DDDAS initiative.  One workshop conclusion is an encouragement to NSF to announce a initiative 
on DDDAS that will support 15 to 30 multidisciplinary research projects in this topic for a duration 
3 to 5 years each. The workshop participants also believe that this should be a sustained effort 
and concluded that such a call for proposals should be renewed at least two additional times in a 
span of 12 or 18 months apart. The possibility of some kind of joint announcement involving other 
agencies (e.g., with DARPA, NIST, or DOE) would create a significantly larger budget that would 
result in starting a significant number of projects and should be considered. 
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Main Body of Report 
 
Introduction 
 
 
    Now assume that we are a few years into the future and that dynamically data driven 
application systems have become commonplace.  A disaster like the two cited in the Executive 
Summary need not be uncontrollable.  For instance6… 
 

    Near Los Angeles, an unknown fault moves violently causing an earthquake of 8.2 on 
the Richter scale.  Above the fault a dam disintegrates and billions of liters of water pour 
down a canyon towards people and a petrochemical plant.  Due to the earthquake, gas 
lines rupture, causing numerous fires including a forest above the dam. Numerous 
chemicals’ storage tanks are ruptured and begin to leak toxic chemicals into both the air 
and the ground near underground aquifers that supply potable water to populous areas 
as well as individuals.  Highways buckle and collapse at numerous points, hindering 
response team action.  Nearby airports sustain major damage to their main runways.  
The main transportation systems are left in a state of chaos.  Underground fiber 
connection severance,  results in local communications disruptions. 
 
    Due to dynamic data driven models incorporated by the water and chemical 
companies however, damage and death were minimized.  As soon as the dam began to 
fail, sensors in the canyon started feeding data via fast wireless networks into a spatially 
distributed network of supercomputers, the majority of which are located away from the 
disaster zone.  A computer model predicted where the water from the dam will flow and 
the rate of the flow,  continuously updated GIS data that were broadcast on the 
emergency broadcast system throughout the Los Angeles region.  
 
    Similarly, the petrochemical plant had previously installed sensors in the plant and the 
surrounding subsurface,  to meet EPA monitoring standards.  The sensors are capable of 
tracking the contaminants as they spread, which enables a  continuous updating of the 
computer generated three-dimensional map of the toxins.  Evacuation plans are 
optimized dynamically using streaming data of where the toxins are propagating. 
Subsequently the cost of containing and subsequent clean-up of the leaking toxins is 
considerably reduced by having continuously running predictions of where the toxins are 
migrating over many time scales.  Regional weather models, interacting with global 
models, are used to predict where the airborne pollutants will travel.  
 
    Using telemetry from under roads and pattern recognition codes7 for monitoring 
highway congestion, a cluster of PC’s is able to help direct emergency vehicles to optimal 
routes for their destinations.  Using a tracking system originally designed for school 
buses, emergency vehicles are continuously tracked and optimal routes are relayed 
directly to the vehicles, using advanced software running on a cluster of PC's.  In 
addition, the bus onboard computer monitors local road conditions and obstacles and 
helps the driver to navigate through tight spots and obstacles.  Emergency medical and 
disaster relief teams interact through wireless video/voice/sensor communications with 
regional medical centers and field hospitals to provide time critical medical attention.   

 
     The dynamically data driven application simulation workshop considered how a set of static 
applications could change into significantly more useful applications involving unpredictable 

 
6 ...The example given here is an amplified and “into-the-future” portrayal of an actual earthquake that 
occurred in LA in the 1920’s 
 
7  The terms “code” and “program” are used interchangeably in this report.  “Code” is the term used by 
applications’ scientists, “program” is the preferred term among computer scientists. 
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dynamic changes.  A number of technical areas have to be addressed in order to transform the 
applications from a “static data collection and assimilation phase plus computation” to an 
environment where field data is collected or mined dynamically, computation routinely expects the 
data to change dynamically, and steering applies to both the data and the computation. 
 
     Not only do algorithms and application methods have to be enhanced, but the system tools 
(middleware) have to be designed so that issues like application and algorithm adaptivity, 
rescaling, computer resource models, security, and fault tolerance, are routinely and dynamically 
available to the applications as needed and such capabilities can be designed into systems from 
the outset.   
 
In addition student education and training curricula that embody DDDAS concepts and 
technologies will enable students to be trained in these novel technologies and tools, and prepare 
them for working in such multidisciplinary application environments.   So the educational aspects 
of such an initiative are extremely valuable and exciting. 
 
 
Applications (General Characteristics, Examples and Related technologies) 
 
An extensive but not exhaustive list of applications that can benefit from the new paradigm is 
given in Appendix 3.  In the following sections, some examples of these applications  will be cited 
to elucidate the points made.  
 
 
Characteristics of a Dynamic Data Driven Application System;  General Properties 
 
Pictorially the new paradigm is shown below.  The intent is to show the new and tight (feedback 
and control) interaction between the ongoing computations and the measurements (or field-data 
collections processes): 
 
         Models 
    ^ 
    || 
Humans   <= interact with=>   Computation<= interact with=>Physical/measurement Systems  
Systems       ^       
  3 Hz  || 10E-20 to 10E+20 Hz 
    || (subatomic to cosmological time scales) 
    V 
   Computational Infrastructure 
  
Figure 1:  Diagram of DDDAS Interactions                           
 
 
Figure 1 identifies three primary modes of interaction for a DDDAS environment: 

1.Human and Computation Interaction       
2. Model or Computation Interaction with Physical System  
3.Computation and Computational Infrastructure Interaction   

 
    While the DDDAS paradigm emphasizes the new technologies that need to be developed for 
modes 2 and 3, the program will be imbalanced if mode 1 is ignored. In fact by providing much 
more accurate information for the human in the loop, DDDAS will result in enhancing mode 1 
also. 
 

Physical systems (e.g., prosthetic legs, chemical plants, and active wings of an aircraft) 
operate at widely varying rates. Cosmologic and geologic rates are extremely slow relative to the 
timescale of  subatomic events that happen very fast. Physical processes can also "produce" and 
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"consume" widely varying data volumes.  In many cases, a computation may be able to interact 
directly with a physical system via some set of sensors and actuators (e.g., a prosthetic leg that 
can sense the terrain and apply the necessary forces to complete a walking motion).  High-
energy physics experiments provide another example. 
 

For the purposes of explanation how this paradigm can affect other than engineering/scientific 
applications we provide here the following Supply Chain Management example from the e-
business world (commercial/manufacturing and finance sectors):   Businesses have increasingly 
become global but, at the same time, have become more specialized in order to concentrate on 
core competencies.  As a result, the path from raw material to finished product delivered to a 
customer has become highly complex in terms of geographic scope, number of organizations 
involved and technological depth.  Organizations have broadly adopted Enterprise Resource 
Planning (ERP) and Supply Chain Management (SCM) Systems in an attempt to better control 
and manage their dispersed operations.   While these systems typically do well at collecting and 
integrating transaction data, and at providing support for planning decisions, they are not effective 
at supporting real-time decision making, particularly with respect to unplanned incidents.  
Fundamental research is needed into the modeling of the interactions among supply chain 
entities and the manner in which major events impact overall supply chain operations.  Research 
is also needed into how to interface such models with the currently available data collection 
mechanisms.  Under a DDDAS approach, a simulation would receive real-time data from ERP 
and SCM systems in order to maintain an accurate current picture of the supply chain.   Decision 
makers would employ the simulation to project the impact of decision options.  Of particular 
import, would be the analysis of ways to mitigate the impact of major disruptive events, such as 
emergency customer orders, plant breakdowns, missed shipments, etc.  This environment has 
several distinguishing characteristics, including the wide range and magnitude of data sources,  
the fact that a variety of organizations own and/or generate the data and  the dependence of 
system behavior on humans (decision makers and customers). 
 
    Humans will be increasingly interacting with physical systems through intervening 
computations. Humans can be considered as a multisensory system with a 3 Hz bandwidth, 
although  some of its biological subsystems may have bandwidths which are considerably higher 
than this. Neurological activity, for example, can run at 2kHz. However, any human activity that 
involves cognition, will probably run (on the order of 3 Hz) much slower  than almost any known 
computer or embedded system in use today.  Other physical systems, however, may operate on 
a scale too broad, too fast, or too slow for direct interaction, as is the case in Cosmology.  
Computations must then be incorporated to approximate and interact with a mathematical model 
of the target system.  In this case this necessitates  dynamic data assimilation or dynamic data 
injection into to the simulation to occur when the simulation finds that it needs more data from 
other sources. Similarly in the case where the simulations are used to control an instrument or 
other measurement device.  
 
     Computation is the instantiation of abstract notions that are modeled themselves on a 
computational infrastructure. We use the term computational infrastructure here in the most 
general sense: all machines and their connections,  large and small. The range includes single 
machines to arbitrary collections of large, parallel machines and small, embedded systems as 
well as systems with high bandwidth and low bandwidth mobile dedicated communication. 
 
Also in the most general sense, computations will also need to exploit dynamically  the 
computational infrastructure on which they are running. A computation will also interact with a 
physical system via its computational infrastructure.  The diagram above is a simple reference 
model pictorializing the environments considered here. In an actual instance, each of the 
elements could be multidimensional, e.g., there could be multiple physical systems and models 
interacting with multiple, distributed computations that interact among themselves and with 
multiple physical devices collecting and streaming data, and with multiple distributed humans. 
This representation of DDDAS problems guides us to emphasize and focus on several key 
characteristics that need to be addressed. 
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 Time Dependency and/or Real Time Aspect 
 
      The dynamic nature of DDDAS problems requires us to address the time dependency or real 
time nature of the applications. Certain applications (e.g., short lived physiological processes or 
sporadic astronomical phenomena) require real time response to observations from experiments 
or field data. The data driven aspect of these problems pertains to the closed loop between   
applications, algorithms and data. The incoming data stream can be used for dynamic decision 
making and/or for adapting the underlying models of the phenomenon. 
 
     Almost any dynamically data driven application simulation raises the issue of real time results.  
This is not always the case, however.   Simulations can run in faster or slower than real time.  
This impacts the data rates required so that the new data must be introduced into the simulation 
in a timely and appropriate fashion. 
 
     In weather prediction, it is common to run simulations for up to five days as a batch process.  
The individual application simulation periods are a few wallclock hours, but do not update the 
early time steps with real data as it becomes available.  Modifying weather prediction application 
programs to incorporate  new dynamically injected data, is not a small change in the application 
program.  It requires rather a fundamental change in the application design, the underlying 
solution algorithms,  and the way people think about the accuracy of the predictions. 
 
 
Data Streams in Addition to Data Sets 
 
      The use of continuous data streams presents an additional challenge for data driven 
simulations since the results vary based on the sampling rate and the discretization scheme 
used. In other cases dynamic data assimilation or interpolation might be necessary to provide a 
feedback to experimental design/control. DDDAS algorithms also need to dynamically assimilate 
new data at mid-simulation as the data arrives, necessitating  “warm restart” capabilities. 
Relevant semantics, ontologies and structure issues need to be addressed [McRae’s talk]. 
 
     Data inputs to the dynamic data driven applications may be in the form of continuous data 
streams in addition to discrete data sets.  Incorporating discrete data inputs during execution of 
an application itself presents several challenges, such as the ability to warm start the algorithm 
when new data arrives or to guide the search using new information. The use of continuous 
streaming data requires the algorithms to use appropriate data discretization methods to use the 
available information. The issues of optimally discretizing continuous data and providing feedback 
to the data generation process, either sensors or computational code, to change the sampling 
frequency are inherently interesting research issues. Moreover, data driven applications will not 
always receive data from known sources with well defined structure and semantics.  The ability of 
handle different data structures and elicit appropriate semantic information is crucial to a robust 
DDDAS. 
 
     Consider the example of forest fire control [Coen’s talk], several low cost sensors could be 
dropped in the fire prone area to continuously monitor environment variables. The data gathered 
from these sensors will be incorporated in the simulation models of the affected region in order to 
accurately predict flare ups or unexpected changes in the fire frontier movement. The applications 
must incorporate the changes in the environment variables, without a cold restart of the 
simulation, in order to accurately predict behavior of the forest fire in time to allow corrective 
actions by the fire fighters. The accuracy of the forest fire behavior prediction and the response 
time available to the fire fighters is directly correlated to the ability of the dynamic data driven 
simulation code to incorporate incoming data at optimal sampling rates. 
 
     Another example where unstructured data may be streamed continuously in a computational 
code is from transportation modeling [Powell’s talk]. A computational model for dynamic vehicle 
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routing over a highway network can be interfaced with the routing information from individual 
vehicles. The decisions made by each driver on the route, start and end locations, and the driving 
conditions differ for each vehicle.  In order for the traffic simulation model to incorporate all the 
information from each vehicle, it must be able to handle different pieces of information at different 
points in time. 
 
     Traffic light control is by itself an interesting DDDAS problem since there are two significant 
variants: is the plan to minimize  or maximize the number of red lights encountered8?  Many 
communities wrestle with this decision and how to optimize the timing of the lights continuously.  
Data is constantly generated from sensors under streets.  The more sophisticated systems 
predict vehicle movement based on additional factors such as the weather.  Until recently, a large 
set of mainframes operated traffic control systems.  It is becoming much more common now to 
see a cluster of PC's running an entire system for cities of up to a few million. 
 
 Combining Local and Global Knowledge 
 
      Combining local knowledge (observations) with global data for system level inferences: This 
relates to the earlier issue, where the autonomous subsystems possess local data and this 
information needs to be synthesized in order to obtain system level predictions.  Some of these 
issues were discussed earlier on in this section.   In addition there are issues of dealing with the 
various data models of these multiple data sources, and enabling application interfaces to these 
heterogeneous data models.  
 

Tightness of Feedback: If both sensor and actuators exist, there can be a feedback control 
loop. The key question is how responsive must the computational architecture be to correctly 
interact with the physical system? 
 
 
Model Interactions and Software Agents 
 

Modeling of transportation systems [Powell’s talk] is once again an ideal example for modeling 
interaction between autonomous systems. Each driver makes a route selection based on 
personal travel plans. However, the interaction between different vehicles needs to be modeled in 
order to estimate congestion on the highway network. A dynamically changing simulation model 
of the transportation network needs to be able to accommodate a variety of vehicles and traveler 
profiles in order to accurately estimate the congestion and prescribe corrective actions. 
 
      Modeling interaction (data exchange) between autonomous (multi-agent) systems: Several 
applications can be modeled as compositions of autonomous systems that interact. In order to 
understand the behavior of the overall system the data exchange between the different elements 
needs to be specified. 
 
     Interactions between different subcomponents of a complex dynamic data driven system may 
not be defined a priori. Several applications can be modeled as compositions of autonomous 
systems that interact. This representation of a complex system may be dictated by the application 
environment, such as a transportation network where each vehicle represents an autonomous 
decision maker, or by the need to decompose the problem into computationally tractable reduced 
or decomposed problems. 
 
     In order to understand the behavior of the overall system, the data exchange between the 
different elements needs to be captured.  Moreover, the subcomponents must be designed with 
the capability of interacting with a wide range of loosely coupled systems. The fundamental 
research problems at the heart of this issue are related to allowing codes to have flexibility in 

 
8 minimize (i.e., traffic control) or maximize (i.e., they would not be called stop lights if you could 
pass one without stopping first) 
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interactions with other elements of the system based on the state of the system, decision 
processes which allow each subsystem to determine appropriate interactions at each time step, 
and the ability to predict the overall system behavior based on the interaction models and the 
functions of each subsystem. 
 
 
 
Interactive Visualization and Steering 
 
      Visualizing complex high dimensional data in order to support human decision makers: 
Visualizing output of a complex model that responds to incoming data is critical when humans are 
involved in the loop. 
 
 While the need for the “human in the loop” may be diminished or eliminated from many 
simulations with advanced DDDAS techniques that we envision, there are many applications 
where human intervention may be necessary.  In many cases, people are still needed to steer 
simulations because the results lead to immediate questions that can only be answered by a 
human expert, inspecting many possibilities.  While techniques such as game theory can be 
applied to sort out good and bad branches to get optimal results, it is not practical if each branch 
of a decision tree takes several wall clock hours, weeks, or months to investigate.  People can 
look at a simulation at one of the decision branches and an expert can steer the simulation in the 
direction of a  "good'' enough solution. 
 
     Three dimensional (in space) visualization is a common requirement for simulations.  Many 
methods are in place now for viewing three dimensions of multiple scalar and vector variables on 
a two dimensional screen.  Adding a fourth dimension (time) requires animation  technologies to 
be commonplace in the future.  Software will need to be developed and standardized in order to 
realize this task and make it easily approachable by newly trained developers and users.  DDAS 
can build on existing NSF programs in this area and provide new areas of research in return. 
 
 
Algorithms 
 
Data Driven Components 
 
     The LA disaster case example in the Introduction is driven by continuously running, coupled 
geological, weather prediction, structural, and transportation simulations.  Simultaneously, 
societal concerns, time critical dynamic responses, and data intensive simulations are run on a 
multiscale basis, and must interface and interact with earthquake models, regional weather 
models, and both surface and subsurface flow models. 
 
     We must identify important information from a discrete event or through data mining of sensor 
input or simulation output.  This will involve some or all of the following techniques:  
 

 Dynamic injection of data into the application 
 Data assimilation and feature extraction 
 Visualization with a human in the loop 
 Algorithmic tolerance to perturbations by streamed data 
 Sensitivity analysis  

 
Dynamic injection of data: 
Application interfaces need to be developed that allow ability of streaming of field collected data 
into the application at execution time.  Employing techniques like data compression and striding 
through data might be needed depending on the application or the data collected.  The ability of 
switching between such modes as the application executes might also be necessary, in cases 
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that would be dictated by the application (e.g. too many data – needed fast – compress; or too 
many data – need results fast – stride and sample over some of the data) 
 
Dynamic Data assimilation and Feature Extraction occurs when there is dynamic or extra data 
available to a simulation.  Weather prediction is a good example of these features.  A simulation 
predicts the future, using a specific input data set when the simulation is launched.  However field 
data can be generated or acquired continuously, even after the simulation starts.   As real data 
becomes available, the simulation can incorporate it into the model and recompute the 
predictions.  Ideally, a model would exist so that given a prediction, the simulation can be run 
backwards in time to see if the initial data is matched [Jones’ talk]. 
 
 Visualization with a human in the loop Many simulations require a visual approach with a human 
offering feedback to the simulations.  Weather models and flow simulations frequently produce a 
computer animation  showing important dynamic features.  A human can steer the simulation to 
more fully investigate interesting features that develop.  As part of a dynamic data driven 
simulation, the continuously arriving data will enhance, rather than eliminate, the human from the 
loop.  
NOTE: Also we want to distinguish here the concepts of visualizing the new data and comparison 
of simulation output data from the concept of injecting data into the ongoing simulation.  
 
Algorithmic tolerance and sensitivity analysis:  Methods are needed to enable the application 
algorithms to be tolerant to the perturbations under streamed data. These items are discussed in 
more detail in subsequent sections, and include addressing multiple scales in models, algorithms, 
and data, with the realization that the scale of each can change over time.  Enabling such 
capabilities will require: 
 

 Model enhancements for local resolution  
 Inverse problems for fine scale models 
 Local gridding  

 
     Model enhancements for local resolution are common.  In the LA disaster example, once the 
toxins have been located, more data can be collected in that specific geographical area so that a 
higher resolution picture can be constructed of the rate of accumulation of the toxins in that 
region.   Inverse problems for fine scale models frequently have to be constructed and solved.  
This allows us to optimize parameters in models that are required before we can continue a 
simulation.    Local or variable gridding allows for localized computing where interesting features 
are present.  In the disaster example, we can use a coarse grid for most of the earthquake area, 
but we need very fine grids will be needed near the fault line.  Similarly, we need a refined grid 
along the edge of the toxin  flow region, but not away from there or in the center of the toxins. 
 
     On a higher level, requirements of models and data must be developed to produce the 
appropriate scale for interaction.  Interface methods are needed to connect between these two 
aspects in order to get just the right scale and data, so that simulations are accurate enough 
without consuming too many computational resources. 
 
 
     Asynchronously collected data must be incorporated into dynamic data driven application 
simulations.  In the LA disaster example, data deployment should be done periodically.  Statistical 
errors in the data must be assessed and handled.  Dealing with errors that are out of an 
acceptable range could be addressed with additional data collection or via tolerance built into the 
algorithms, or in some cases human intervention may be initiated. 
 
     For example, in the case of the forest fire, surveillance data can be collected only while the 
plane flying over the region [Coen’s talk]. In particular in this example proper placement of 
sensors is paramount to useful data driven simulations.  In the case of the disaster example, 
sensors can be dropped from an airplane flying above the region of interest.  Small sensors 
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currently exist that propagate underground  and are able to provide real-time  measurements of 
temperature, wind, location, and the presence of certain chemicals.  These data must be 
dynamically assimilated into a simulation.  Algorithms tolerant to such perturbations of the 
dynamically injected data are necessary.   For grid oriented applications, a moving, unstructured 
grid of data is continuously updated and affects which algorithms are appropriate, and methods 
are needed to select these appropriate algorithms dynamically at runtime. Some other methods to 
use would be interpolation methods to assimilate the data and filters to denoise it into a form 
amenable to the error bound restrictions of the simulations. 
 
     Remediation and response procedures may need to be incorporated into simulations [Ewing’s 
talk].  The strategies must be based on the resources available and necessary constraints, such 
as the following: 
 

 Multiscale model utilization  
 Short time event updates of the objective functional  
 Self adaptive, dynamic control  
 Uncertainties which drive the dynamics  
 Warm restarts of algorithms.  

 
Each of these strategies may need to be employed while optimizing tradeoffs between time 
criticality, model fidelity, and resource allocation.  Moreover, the algorithms must be robust and 
fault tolerant. 
 
 
 
Fault Tolerance  
 
Fault tolerant algorithms become essential in the DDDAS application setting.  Many DDDAS 
applications will run under dynamic conditions: the applications requirements are dynamic, 
changing in time depending on the dynamic data inputs, and also the underlying computational 
infrastructure on which these applications run will in general be dynamically changing.   DDDAS 
applications are expected to run long time periods  in varied environments.  The application 
programs and algorithms will have to be able to handle seamlessly data streams, handling the 
rates at which they are produced, handling situations where they are produced at higher volumes 
than consumed by the application, and handling resource availability, like the situations where 
processors, memory, I/O, network connectivity and bandwidth, may disappear from the 
computational infrastructure (either for a short period of time or even permanently for the duration 
of the computation). 
 
    New systems need to be developed to allow continuing the execution of the application with a 
smaller number of computational resources.  Today warm restarts provide a means for 
addressing this problem, this however is a limiting methodology and more dynamic and adaptive 
methods need to be developed and supported by the computational infrastructure, and not just for 
space-time grids. 
 
    An interesting research area will develop as security algorithms evolve that will permit 
programs to challenge data streams based on their content or their source.  In the case of 
telemetry coming in from an oil field [Ewing’s talk], there is a lot of room for deceptive data being 
delivered by a competitor who shares the oil field.  Not only situations of terrorism [Powell’s talk] 
need be considered as security threats, but over zealous competitors may in fact be a greater 
source of harm.  Planning for these conditions is  to some extend addressed in simulations today, 
but will be incorporated into DDDAS simulations in a more integrated way. 
  
Optimization and Inverse Problems 
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      The evolving or adaptable nature of most DDDAS applications presents challenging 
opportunities for solving the  associated optimization or inverse problems.     Most simulations 
include some set of parameters that must be estimated in advance.  However such optimal, or 
even near optimal selection is rarely possible.  Furthermore, the optimal choice usually changes 
during the course of a long simulation.  Inverse problems are designed to help in selecting 
appropriately such parameters.  However, many inverse problems are unfortunately ill posed or 
extremely difficult to solve. 
 
     Optimization techniques for many simulations are not currently possible due to the increased 
size of the resulting problems.  Better algorithms need to be designed and analyzed for very large 
scale problems that until recently have been too large to experiment on.  With the current 
computing environments and platforms, such as for example the two NSF PACI leading edge 
sites and their partners, as well as future opportunities on which to leverage on, ample number of 
cycles should be available for such experimentation, at a level that has not been possible to date.  
In addition  supercomputing management systems, like the Condor (system developed at the 
University of Wisconsin),  make available the nearly infinite unused workstation cycles as well.  
     Consider trying to model the production processes in a chemical plant.  Many parameters are 
necessary.  Typically, a subset tries to maximize a particular set of products while staying within a 
set of constraints.  Traditionally, many simulations are run using slightly different input parameters 
on static data sets.  After a certain amount of computer time or wall clock time, the best set of 
parameters is used to continue simulations and to make decisions concerning the operation of 
the plant.  A DDDAS version will determine the parameters using a data stream.  Improvements 
in algorithms for inverse problems or for optimization algorithms that scale better than current 
ones are essential.   Further, all of the parameters should be optimized, not just a very small 
subset as is typical today with data set oriented simulations. 
 
     This research needs to have a synergy among all of its practitioners, including applied 
mathematicians who are willing to work with simulation experts.  This is an area where 
theoreticians can interact with computational scientists to address a number of challenging 
problems with respect to algorithms tolerant to dynamic data injection perturbations, making a 
significant impact on applications’ capabilities. 
 
 Uncertainties in the Data 
 
 Uncertainties in DDDAS applications emanate from several sources, namely uncertainty 
associated with the model, uncertainties in the input data (streamed), and the environment 
variables. Identifying the factors that have the greatest impact on the uncertainty output of the 
calculations, is essential in order to control the overall processes within specific limits. Computing 
all output distributions to provide error bounds is, for most realistic problems, a computationally 
prohibitive task. Hence, using prior observations to guide the output distribution estimations       
presents a possible approach to incorporating uncertainty in control decisions.   
 
     Incorporating these statistical errors (estimations or experimental data uncertainties) into 
computations, particularly for coupled nonlinear systems, is difficult. This is compounded by the 
fact that tolerance may also  change adaptively during a simulation.  Error ranges for uncertainty 
in the data must be created and analyzed during simulations. 
 
     Sensitivity analysis must be performed continuously during simulations with options in case of 
a statistical anomaly.  Filters must be used, which are based on the sensitivity analysis in order to 
massage the data into an acceptable range.  In many cases, the filters will need to be created as 
a result of applications or simulations moving from data sets to data streams.  Data assimilation, 
Baysesian methods, non-linear multiresolution denoising, and Monte-Carlo methods are all 
candidates for sensitivity analysis and data filtering. 
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     The common mathematical model in many DDDAS applications may be formulated as solving 
a time dependent, nonlinear problem of the form:      F(x+Dx(t)) = 0, by iteratively choosing a new 
approximate solution x based on the time dependent perturbation Dx(t).  
 
 In practice, the data streaming in may have errors and therefore may not be completely accurate 
or reliable (for example, in reservoir data sets, a 15% error in the data is common).  As a result, 
perhaps one does not need to solve the nonlinear equation precisely at each step.  This can 
expedite the execution  
 
     At each iterative step, the following three issues may need to be addressed.  Incomplete 
solves of a sequence of related models must be understood.  In addition the effects of 
perturbations, either in the data and/or the model, need to be resolved and kept within acceptable 
limits.  Finally, nontraditional convergence issues have to be understood and resolved.  
Consequently,  there will be a high premium on developing quick approximate direction choices, 
such as, lower rank updates and continuation methods, and understanding their behavior are 
important issues. 
 
 
 
 Multiple Scales and Model Reduction 
 
      Multiresolution capabilities (scaling for multiple levels of resolution) are essential for DDDAS 
problems.  Not only to negotiate scale between applications and data, but also to design efficient 
and adaptive solution methods.  The ability to define different regions with differing granularities 
provides the decision makers with the ability to focus resources on critical areas (for example in 
the fire-fighting example, into  regions where flare ups are highly probable).   
 
      The physical phenomena governing most of the applications discussed in this report may be 
extremely complex, with several parameters required to specify the governing equations. 
Incorporating automatic model reduction into solution procedures provides an additional  means 
of increasing computational efficiency by lumping parameters, and simplifying basic principles. 
Developing high fidelity descriptions of the entire system may be computationally intractable. 
Several approximation and problem decomposition approaches may need to be developed and 
evaluated for complex dynamic data driven applications in order to select an appropriate method 
and model for a given application domain and parameter range. 
 
     Perhaps a straightforward approach would be  a perturbative approximation of the existing 
applications and simulations approaches.  However, for DDDAS, making these descriptions 
perform effectively in a symbiotic context is crucial.  One goal of a DDDAS application is to have 
a number of descriptions available.  Any one of these could be selected at a time in order to 
encapsulate the physical phenomena at any given instance.  Having multiple descriptions 
available allows for testing to determine under what conditions   a switch to another description is 
necessary or desirable. 
 
     One approach is to provide multiple resolution capabilities in the models, which allows both 
scaling (finer or coarser resolutions) of feature resolution in the same execution. Modelers can 
focus on areas where interesting or critical dynamics are observable,  by using different scaling or 
granularity levels for different regions of the applications, as needed by the dynamically injected 
data.   Multiresolution methodology provides means to identify scale -dependent features. 
 
     The ability to model systems with different resolutions can also be achieved by model 
reduction methods, such as lumped parameter systems.  For example, in a simulation of an 
airplane, the model of airflow close to a wing is very complicated.  However, the airflow 
sufficiently far away from the vehicle is a simple equation that represents constant airflow.  
Reducing the model away from the wing makes good sense and is a method that has been 
successfully applied. 
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     Many problems are decomposed using similar or identical physical models in different parts of 
the domain and then tied together at the interfaces.  Ocean modeling is frequently done by 
stacking several shallow water problems and allowing the shape of the layers to shift during the 
course of a multiyear simulation. Problem decomposition methods are frequently used to reduce 
the computational complexity. However, ensuring data integrity in the decomposed problems, 
especially when the algorithms are driven by constantly changing data, is a difficult problem 
which requires novel and accurate error tracking methods. 
 
     In the fire fighting example [Coen’s talk], several physical phenomena need to be coupled in 
order to predict the behavior of forest fires accurately.  For example, combustion models, heat 
transfer and fluid flow models, and structural models for the trees and the terrain need to be 
coupled in order to predict flare ups and the direction of the fire zone movement. The fidelity of 
models used in this example depends on the types of decisions being made. If fire fighters are 
using airborne chemical dispensers, then an approximate determination of the fire zone is 
sufficient. However, if several fire fighters are in the fire zone using ground based fire control 
methods then the prediction of flare ups needs to be accurate and is crucial in saving lives. 
Modeling the entire fire zone using a high fidelity model may not produce results in real time to 
take corrective actions. The ability to selectively model regions of the fire zone that have the 
highest probability of a flare up at high fidelity is highly desirable in such situations. These regions 
can change dynamically based on incoming data from sensors surrounding the fire zone. 
 
 Systems Infrastructure 
 
 
      Computational systems for DDDAS require a fundamental advances in a number of areas.  
Aspects involved  include physical devices, information services, resource, system, and 
application management, programming environments, security, fault tolerance, and economic 
models for the computational infrastructure.  
 
Physical Devices and a  New Generation of Sensors 
   
     Physical devices will include not only processing and communication hardware, but also 
sensors and actuators. Sensors and actuators allow traditional computational devices to interact 
with physical systems. These devices are additional "resources" in the computational grid, and as 
such, resource discovery and allocation of sensors and actuators becomes an important issue. 
 
In recent years miniaturization of almost all forms of electronics has led to a revolution in sensors.  
Global positioning systems, embedded into sensors, provide a new form of information 
generation that can be used in countless applications.  We expect sensor technology to play a 
major role in measurements and field data collections for DDDAS environments. 
 
     When fighting a fire or trying to locate where a chemical contamination is moving and the 
toxicity propagation, inexpensive sensors that can broadcast a limited amount of information 
(temperature, location, the presence of a very limited number of chemicals, etc.) now exist that 
can be scattered across a region.  When the sensor ceases broadcasting, this is an indication 
that either fire or chemicals may have destroyed it.  When a collection of sensors can be used to 
form a clear pattern of certain environmental conditions. In the case of the specific example here, 
even more verifiable information can be added to the simulation of the disaster propagation, by 
including the fact the these sensors ceased indicating the propagation of destructive chemicals or 
fire. 
 
     Many sensors today are small and mass produced, easily specialized, and provide data 
cheaply.  Small, portable sensors that interact with the GPS system provide a way of delivering 
data from most locations with great accuracy.  Some sensors now can broadcast wirelessly for a 
short distance providing location, temperature, and a small amount of chemical data.  These 
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sensors are ideal for providing data where people cannot or should go, such as into a wildfire or a 
major pollution area.    Sensors are also becoming essential in medical procedures, such as brain 
surgery and microsurgery.  Being able to place fast computers that provide visualization for 
doctors within their grasp is revolutionizing medical procedures.  Further, data driven sensors for 
aiming devices for brain surgery are becoming more commonplace, and this research can be 
leveraged and applied to fields other  than medicine.  DDDAS will exploit these new advances in 
sensor technology, in a very effective way. 
 
 Information Services 
  
Added to the challenge of developing DDDAS is the realization that these more complex 
applications will have to function in a complex and perhaps evolutionary hardware and software 
environment.  Present and future computing platforms, systems’ software and applications’ 
software will span a multi-part "globally distributed" computing environments environment 
{referred to as Computational Grids} that encompass the concepts of the meta-computing, 
heterogeneous hardware and software, networked and adaptive platforms, and will be manifest in 
a configuration ranging from assemblies of networked workstations, to networked 
supercomputing clusters. For example one of the novel and promising, as well as challenging, 
aspects of DDDAS,  is employing an heterogeneous platform environments that include, but 
limited to, embedded sensors for data-collection, distributed high-performance simulations 
environments and special-purpose platforms for pre- and post processing of data, e.g. data 
assimilation and visualization.    
 
For these kinds of platforms the underlying computing and communications resources available 
to the applications may vary even as the application executes.  At the same time the dynamic 
data-driven applications will also have varying requirements as the computation proceeds, and 
therefore the resource requirements of the applications also vary.  So with such variation in the 
underlying platforms and in the applications requirements themselves, as well as considerations 
of optimized performance and fault-tolerance, it may be required that the mapping of the 
applications on these platforms to change as the computation proceeds. Mapping the kinds of 
applications of concern here on these platforms requires dynamic and enhanced 
(dynamic/adaptive/active) systems services, which will need to be developed to allow DDDAS to 
effectively operate in the complex and heterogeneous computational environments that are 
emerging and will exist in the future. Fault tolerance and Quality of Service (QoS) will pose 
additional challenges for the applications software needed and/or the middle-ware services.  The 
kinds of environments we consider will most likely include internet connected resources, and 
therefore addressing issues of scalability will become crucial challenges for the development and 
distributed execution environments envisioned here.  
 
 
     Computations must be able to be cognizant of and able to exploit the computational 
infrastructure on which they are running. Hence, information services must be available, such that 
an application can discover not only other compute resources, but also models for all manner of 
data and services that are available in the computational infrastructure. Such data models can 
include concepts such as uncertainty or any quality of the data. 
 
     Different application domains may need to catalog and identify alike resources in entirely 
different manners. Hence, different naming schemas or ontologies, information services, or 
information views may be necessary to properly support different application domains. These 
information services need to be distributed such that information locality is maintained in much 
the same way as data locality. This is necessary to ensure good performance and low latency 
access to fresh resource data or information. This also helps in achieving a high level of 
integration and responsiveness between computational and physical systems. The distributed 
nature of information services is also essential, and it will be necessary to ensure scalability of the 
computational infrastructure.  
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Application, System, and Resource Management  
 
     An application may need to move code or data depending on runtime conditions. A typical 
tradeoff can occur if it is cheaper to process a large data set locally rather than paying the 
network overhead to move the data to a faster host. Remote visualization of large data sets is an 
example application for these tradeoffs. Making this decision involves being able to evaluate a 
complexity model for processing versus the data transfer time. Applications may need to 
reorganize data on the fly using network caches. Applications may also have to reconfigure to 
cope with resource failures or to make better use of available resources. 
 
Just as the hardware needs to be monitored, so does the basic system software and middleware.  
Fault tolerant applications provide a challenge to middleware.  Which systems should be used so 
that if a processor drops out of a computation, the computation does not hang and have to be run 
again.  The more fault tolerant a system is, the higher the overhead usually is.  There has to be a 
level of risk that an application or simulation takes that produces results quickly most of the time.  
However, once there is a fault, the level must be reducible  (and later increasable) in order to get 
the right risk scale.     New system management tools that allow discovery and advice on how 
often data is polled, or backed up to another system (which may be another processor or storage 
device), and how processors allocated or utilized will be imperative to DDDAS research. 
 
     Together with managing the underlying computing and communication platforms resources, 
sensors, actuators represent the additional resources that need to be managed in the 
computational infrastructure for dynamic data driven applications. In order to efficiently allocate 
these resources dynamically in the execution of a computational scenario the performance of 
these resources must be monitored. Sensor data can also be treated as performance monitoring 
data Performance and sensor monitoring must be multiscale, and it must be capable of handling 
different scales and granularity of data available depending on the "proximity" to the sensor and 
information needs.  The use of sensors and actuators can be planned and scheduled through 
resource brokers or via negotiations between applications. The resource management schemes 
need to incorporate concepts of advance (in time) and immediate (capacity) reservations (QoS). 
 
Economic Models for the Computational Infrastructure: Ultimately, comprehensive economic models 
will be developed for use of the computational infrastructure [Frank’s talk]. This would not only 
include simple accounting, but also the cost and contracting for advance and capacity 
reservations. Economic models must permit explicit modeling of resource contention between 
different requirements in dynamic data driven computations. Further, any economic model should 
be available through the information services. 
 
Programming Environments, Security, and Fault Tolerance 
 
    Programming environments must be able to support all of the capabilities discussed above to 
make them easy to use. This requires libraries with well defined APIs, programming tools, and 
middleware. Examples of middleware include model resolvers that can enable translations and 
reorganizations of data streamed between computations based on the output and input data 
models. Tools must dynamically compose other services and tools. Besides making code 
development easier, this enables the development of visual programming environments. 
 
     Security should be designed as part of any system at all levels. Encryption, authentication, 
and authorization must be provided where needed. Secure mechanisms are needed for 
application access of the required computing infrastructure, with dynamic group security domains 
to support collaborative environments.  System status monitoring should be available to notify 
applications of resource failures. Exact notions of fault detection, fault containment, and fault 
recovery should be application specific. 
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 Why Now? 
 
  
     Many application simulations today work in the batch world: an event is simulated based on a 
static set of data.  If newer data becomes available, the simulation is simply rerun.  Very few 
applications use real time data streams even if the capability to do so is available.  Great efforts 
have been devoted in fields like weather prediction to run simulations faster than real time based 
on static data sets.  Ensembles are produced to get an average guess as to the weather based 
on a number of parallel runs with small variations in the parameters.  This is highly inefficient and 
leads to multiple weather predictions that are mutually conflicting when major events are 
predicted (e.g., compare Accuweather, CNN, and the Weather Channel for examples of snow 
predictions in the northeast). 
 
     The fastest computers today, including terascale ones, provide a level of service that has been 
dreamed of for decades in numerous scientific fields such as weather, climate, and whole 
industrial plant simulation.  Presently, each of these fields can produce data streams using 
sensors that have been developed over many years.  We are now poised to do real time, data 
driven simulations with feedback, warm restarts, and continuous updates. 
 
     Clusters of inexpensive, fast PC's are providing cost effective and scalable computing 
platforms that may well be the future of supercomputers.  Clusters can range from a few 
processors up to thousands depending on the budget and floor space allowances.  Once again, 
with enough processors, PC clusters can compete with the traditional supercomputers.  However, 
issues like how to update a few thousand PC's at once need to be resolved before clusters will be 
truly competitive for DDDAS applications. These clusters can also be used for visualization and 
running data collectors.  This is particularly important in medical applications [Johnson’s talk].  
New algorithms are being developed (or have been) using fast, new networks and the fact that 
there are cycles available on the nation's supercomputers that enable new ways of attacking old 
problems 
 
 A numbers of NSF programs today support batch style application simulations).  DDDAS offers a 
plan for moving many of these simulations areas into the future where continuously fed data 
streams are the normal input instead of static data sets.   Further, it moves the older style of data 
set analysis ahead by motivating people to keep a much larger data set with information from a 
wider set of times in libraries for debugging codes and developing new algorithms.  This is similar 
to what has happened with single processor algorithms for fields where parallel computer 
algorithms are now standard: the older, easier to use serial computers have new algorithms that 
would not have been developed without the common usage of parallel computers. 
 
There has been progress in a number of technology areas.  These include advances in 
computing, networking, sensors and data collection, software, algorithms, and application 
technologies.  Combining all of these technologies will lead to a higher level of application 
simulations that are both more accurate and able to provide analysis and prediction better than 
what is currently available in most fields today.  Ultimately the effects of such applications can 
have impact on productivity that will be increased as a direct result of this new synergy of 
technology.  DDDAS paradigm will reduce the time needed to adapt to new conditions and to 
decide how to allocate resources to respond to the unexpected, data dependent changes in 
simulations.  This is particularly important in the following areas: 
 

 Experiments on short lived processes (e.g., high energy physics and physiology)  
 Capture of sporadic events (astronomy) 
 Active control of environmental or safety controls in structures during an event 

(e.g., earthquakes or hurricanes) 
 Disturbance in a chemical plant 
 Early warning systems (e.g., weather, seismic, fire, pollution, tornado)  
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 Financial Systems 
 Business, Enterprise and Manufacturing operations 
 Medical applications 

 
 
 Educational/Training Benefits 
 
A research initiative in DDDAS will have tremendous benefit in the education and training of 
students, both at the graduate and the undergraduate level.  The exciting new research areas, 
enhanced and even novel applications, novel algorithms, and new capabilities in systems 
software technologies, will provide fertile work grounds for students in the many applications 
disciplines, students in applied and theoretical mathematics for research to address the 
challenges of new algorithms and new methods to deal with the multiscale models and data 
dynamic data uncertainties.  The work needed spans from the theoretical underpinnings for such 
systems to applied research on algorithms development and implementations.  In terms of the 
computer science advances needed for developing the kinds of systems software capabilities that 
have been discussed here, a research initiative in this area will provide a wealth of exciting 
research projects opportunities for students to be involved and acquire the background on, a 
critical and valuable expertise in working on state-of-the-art technologies. 
 
 
Summary  
 
    The workshop addressed the motivations, challenges, and opportunities in supporting research 
that pushes towards new frontiers and creates a new paradigm for application and simulation 
systems.  In this case, the simulations’ input can be altered dynamically by real time field data 
and have such input dynamically steering the simulations.  Additionally, the new paradigm seeks 
to establish capabilities where the simulations can be used to steer the experiments 
(measurements) or the field data collection or mining process.  Such a synergistic feedback 
control loop between simulations and measurements is a novel technical direction with high 
potential pay off in terms of creating applications with new and greatly enhanced capabilities.   
 
    The DDDAS initiative will define new classes of simulation applications that are envisioned to 
have greatly enhanced capabilities than the present ones.  From a research perspective, the 
initiative will define a new set of problems to be addressed and will create a strong feedback loop 
between the applications’ research and the engineering and computer sciences research needed 
to support these enhanced capabilities. The DDDAS initiative will provide a fruitful ground for 
scientists to ask new questions that have not been addressed or even asked before.   In fact, this 
initiative will help establish stronger relations between the applications’ researchers and the 
engineering and computer sciences researchers. 
 
    The dynamic nature of DDDAS problems requires us to address the time dependency or real 
time nature of the applications. Certain applications, such as short lived physiological processes 
or sporadic astronomical phenomenon, require real time response to observations from 
experiments or field data. The data driven aspect of these problems pertains to the closed loop 
between applications, algorithms and data. The incoming data stream can be used for dynamic 
decision making and for adapting the underlying models of the phenomenon.  
 
    This initiative will provide an avenue for research that is not addressed by the current ITR 
initiative , but can easily be used to augment and incorporate possible ITR advances.  There was 
a preponderant view of workshop participants, that DDDAS is sufficiently distinct in its vision from 
the broad goals of ITR to warrant a separate, more focused  initiative.  
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 Appendix 1 / Agenda for the Workshop on Dynamic Data Driven Application Systems 

National Science Foundation, Arlington, VA  

March 8-10, 2000 

The workshop will take place at NSF.  All plenary presentations will be in Room 110.  

Specific room assignments for Working Group meetings will be provided at the meeting  

Wednesday, March 8, 2000  
   

8:00a.m.-8:30a.m. Registration and Coffee/Donuts 

8:15a.m.-8:45a.m. 

Welcoming Remarks by the Organizers, Co-Chairs and NSF Officials: 
Dr. Bordogna, NSF Deputy Director; Dr. Bajcsy, CISE AD; Dr. 
Eisenstein, MPS AD; Dr. Leinen, GEO AD; Dr. Wong, ENG AD 
 
Introduction to the DDDAS Paradigm – F. Darema 

8:45a.m.-12:15p.m. Plenary Presentations 

8:45a.m.-
9:15a.m. 

Greg McRae, Professor, MIT: New Directions on 
Model-Based Data Assimilation 

9:15a.m.-
9:45a.m. 

Janice Coen, Scientist, NCAR: Coupled atmosphere-
wildfire modeling 

9:45a.m.-
10:00a.m.  Break 

10:00a.m.-
10:30a.m. 

Howard Frank, Dean, Business School, UMD: 
Data/Analysis Challenges in the Electronic Commerce 
Environment 

10:30a.m.-
11:00a.m. 

Klaus Schulten, Professor, UIUC, Beckman Institute: 
Steered computing - A powerful new tool for molecular 
biology 

11:00a.m.-
11:30a.m. 

Dick Ewing, Professor, Texas A&M University: 
Interactive Control of Large-Scale Simulations 

11:30a.m.-
12:00p.m. 

Chris Johnson, Professor, University of Utah: Interactive 
Simulation and Visualization in Medicine: Applications 
to Cardiology, Neuroscience, and Medical Imaging 

12:00p.m.-12:15p.m.  Charges to the Working Groups 
12:00p.m.-1:15p.m.  Lunch 

1:15p.m.-5:30p.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing 
Systems) 
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Thursday, March 9, 2000  

  

7:45a.m.-8:30a.m. Coffee/Donuts 
8:30a.m.-10:00a.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems) 
10:00a.m-10:30a.m. Break 
10:30a.m.-12:00p.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems) 
12:00p.m.-1:15p.m. Lunch 
1:15p.m.-3:00p.m. Plenary / Interim Presentations of Break-out Groups' discussions 
3:15p.m.-3:30p.m. Break 
3:30p.m.-5:30p.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems) 

 
Friday, March 10, 2000 

 

7:45a.m.-8:30a.m. Coffee/Donuts 

8:30a.m.-9:00a.m. Anita Jones, Professor, UVA: Injecting Simulation into Real Life Processes (Plenary 
Presentation) 

9:00a.m.-10:00a.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems) 
10:00a.m.-
10:30a.m. Break 

10:30a.m.-
12:00p.m. Break-out Groups (G1: Applications; G2: Algorithms; G3: Computing Systems) 

12:00p.m.-1:15p.m. Lunch 
1:15p.m.-2:15p.m. Plenary / Final Presentations of Break-out Groups' discussions 
2:15p.m.-3:30p.m. Discussions on Presentations and process for completing the report 
3:30p.m.  Meeting Adjourns 
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Appendix 2 / Working Group Charges 
 
Dynamic Data Driven Application Systems’ Workshop Report 
 
• We have to write a report that summarizes the discussions of the working groups and plenary 
talks. 
• The report should provide a compelling argument to senior management that research in 
dynamic data driven application systems should be supported now. 
• The report will be online in the next 10 days.  Suggestions for improvements will be welcome.  
Contributions will be even more welcome. 
 
Issues for ALL Workgroups to Address 
 
• Why is now the right time to do this type of research? 
• What ongoing research will provide a foundation for new research? 
• What programs are necessary to enable the multidisciplinary type of research of this program? 
• What initiatives exist that are related? 
• What programming aspects should be emphasized? 
• What exciting new opportunities will be created? 
   – For postdocs? 
   – For graduate education? 
• How will it help industry? 
• Technology transfer? 
 
Working Group on Applications 
 
• Provide application examples that will benefit from 
   – a new paradigm. 
   – existing and new potential applications. 
• Describe challenges in developing applications. 
• What will be the composition of these applications? 
• Describe data management and interfaces to experiments or field data. 
• What are the computation, I/O, and memory requirements? 
• What system support is needed in a dynamic application environment? 
• What system resources must be allocated in order to assure a high quality of service? 
 
Working Group on Application Algorithms 
 
• Describe the challenges in application algorithms to enable dynamic data driven application 
systems. 
• What algorithmic enhancements are needed to allow perturbations in the data input? 
• How do you factor statistical errors into algorithms? 
• How do you change algorithms as data changes during a simulation? 
• What knowledge based systems, interfaces, or application assists can be created to help with 
changing algorithms dynamically? 
• What systems support is necessary? 
 
Working Group on Computing Systems Support 
 
• What are the software challenges for programming environments for the development and 
runtime support when the underlying resources and application requirements can change 
suddenly? 
• What capabilities are needed by the underlying systems that the applications will execute so 
that quality of service is high? 
• What are the issues with respect to data management, models, and structures? 
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•What are the issues with respect to interfaces between simulations and measurements (and 
data issues)? 
•What addition capabilities are needed for application support and systems management 
services? 
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Appendix 3 / Application Examples 
 
This section is under construction and will be updated shortly. 
 
Adaptive structures (car suspensions, earthquake proof buildings, space structures)  
 
 Operational Systems 
 

      Transportation and logistics, reconfigurable manufacturing, supply chains, 
autonomous (embedded?) systems,  disruptions and disturbances in manufacturing 
processes.   
A case example is provided by considering a typical chemical plant, where the 
fundamental chemical processes are governed by the underlying chemistry of the 
ingredients. However, in addition to the chemical rate equations, the reactor design and 
the operating conditions also affect the functioning and the yield rates of the process. In 
order to efficiently control a chemical reactor, we need to solve the coupled chemical 
kinetics, fluid flow/heat transfer and economic equations in  the presence of uncertainty 
(discussed earlier). The use of incoming experimental data to guide the controller in 
chemical plant represents a perfect DDDAS application domain. 
Air Traffic Management:  The very significant growth in air travel within the US, coupled 
with the much slower growth in the implementation of new air traffic management and 
control systems, has led to substantial increases in air travel delays.  Major delays on any 
given day are typically associated with particular events that have altered normal 
airspace capacity or demand patterns.  Within the US, most delays are associated with 
disruptive weather events.  A traffic flow management system must have the capability to 
predict capacity-demand imbalances and to support the generation of actions that 
mitigate the impact of these predicted imbalances.  Examples of such actions include 
delaying flights on the ground, rerouting flights, canceling flights and restricting the flow in 
certain portions of the airspace.  The DDDAS paradigm provides an ideal approach for 
creating a next generation air traffic management system that gives much more reliable 
predictions and also gives high quality support for traffic control and planning.  Under a 
DDDAS approach a stochastic simulation of the National Airspace System would operate 
continuously and would be fed by a real-time stream of traffic status updates.  The 
simulation would require models of both the en-route airspace, the airports, weather and 
airline responses to unfavorable events.  This overall system would provide airspace 
status information and predictions to both the Federal Aviation Administration (FAA) 
traffic flow managers and to the airline operational control centers.  Both of these parties 
would have access to models that estimate the impact of traffic flow manager control 
actions and airline flight-plan modification decisions.  Such a system must react to data 
from sources that are both geographically and organizationally distributed (the airlines 
and the FAA).  Furthermore, it must support similarly distributed decision making.  
Success in this problem area would have a significant positive impact on nearly all 
Americans. 
Supply Chain Management:   Businesses have increasingly become global but, at the 
same time, have become more specialized in order to concentrate on core competencies.  
As a result, the path from raw material to finished product delivered to a customer has 
become highly complex in terms of geographic scope, number of organizations involved 
and technological depth.  Organizations have broadly adopted Enterprise Resource 
Planning (ERP) and Supply Chain Management (SCM) Systems in an attempt to better 
control and manage their dispersed operations.   While these systems typically do well at 
collecting and integrating transaction data, and at providing support for planning 
decisions, they are not effective at supporting real-time decision making, particularly with 
respect to unplanned incidents.  Fundamental research is needed into the modeling of 
the interactions among supply chain entities and the manner in which major events 
impact overall supply chain operations.  Research is also needed into how to interface 
such models with the currently available data collection mechanisms.  Under a DDDAS 
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approach, a simulation would receive real-time data from ERP and SCM systems in order 
to maintain an accurate current picture of the supply chain.   Decision makers would 
employ the simulation to project the impact of decision options.  Of particular import, 
would be the analysis of ways to mitigate the impact of major disruptive events, such as 
emergency customer orders, plant breakdowns, missed shipments, etc.  This 
environment has several distinguishing characteristics, including the wide range and 
magnitude of data sources,  the fact that a variety of organizations own and/or generate 
the data and  the dependence of system behavior on humans (decision makers and 
customers).   

 
Oil Exploration:   Sophisticated oil exploraton methods involve both measurements 
(seismic, sonic, and radiation propagation) in the subterranian regions of interest and 
extensive modeling and simulations of the measurement processes.  Correlation of 
measurements with simulation analysis is used to pin point the regions of interest.  Ability 
to inject dynamically measurement data to ongoing simulations can result in refining the 
ability of the simulation to pinpoint the thin petroliferous layers.   Reversly when the 
simulation finds evidence of a potential petroliferous layer, the simulation can seek and 
use additional datapoints from data already collected or can control the measuring 
processes to collect additional field data as needed, thus making more targeted and 
efficient the measuring processes.  This control loop between simulations and 
measurements will result in better analysis and prediciton processes, and in reducing the 
cost of exploration, by expediting the measuments processes.   

 
 Natural Systems 
 

Forest fires propagation and containment, weather prediction (extreme geospace 
conditions - space weather);  hurricane (or other desaster) evacuation.  Such examples 
have been discussed in the main body of the report and were the subject of some of the 
presentations at the workshop. 
 Radio astronomy needs a close connection between 90+ radio-telescopes to conduct a 
full sky survey. Data collected at one site needs to be analyzed (fed to a simulation?) in 
order to guide other telescopes to search in the appropriate orientation; Gravity wave 
detector and CERN particle detector (Eisenstein examples). 

 
 Social Systems 
 

Policing and drug prevention measures, traffic control, terrorist attacks... (expand on the 
traffic control and terrorist attack examples).. monitoring of epidemic spread 
Transportation systems and traffic control: Managing flow of traffic on a network, either 
on land or air, presents challenges similar to most social systems. Each individual entity 
(vehicle) decides on routes based on its origin and destination points. From a  system 
level perspective, the excessive flow of vehicles on a specific segment represents a 
bottleneck situation. In       order to model this application, the individual vehicle behavior 
needs to be considered along with the environmental       conditions. Such a model could 
also be used to give specific early warning instructions to the vehicles in order to       
avoid congestion.   

Human/Mechanical Systems 
 
Medical Device Design:  Closed loop engineering design 
 
 

Sudden cardiac death kills approximately 250,000 people in the UnitedStates each year.  
The danger strikes when the heart alters its normal,steady beat and slips into a condition 
called fibrillation.  Fibrillationdescribes a state in which the electrical activity throughout 
the heart isscrambled, resulting in the inefficient pumping of blood.  Unless thefibrillation 
is reversed using an applied electrical shock, the conditionleads to death.This shock is 
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administered from a device known as a defibrillator,typically administered by a highly 
trained health care professional, suchas a paramedic or an emergency room doctor.  
These external defibrillatorshave been in use for some time, yet researchers have 
recently designed``implantable'' defibrillation units that automatically detect and 
regulatean arrythmic heart beat.  Implanted within the patient's chest withelectrodes 
placed near the heart, these devices first detect in itsearliest manifestations the abnormal 
electrical activity that is thehallmark of fibrillation and then apply defibrillation pulses.  As 
theheart begins to beat irregularly, the defibrillator applies a small jolt ofelectricity that 
returns the heart to its normal beat, typically before thepatient even loses consciousness. 
 
However, the design of such a device is very difficult.  The device shoulddeliver the 
proper electric shock to the heart, yet should not damage otherinternal organs.  To 
complicate matters, many overweight individuals havean insulating layer of fat over their 
heart, rendering much of theelectrical shock useless.  There are many questions to be 
answered for thedesign of such a device: Where should the electrodes be placed?  How 
manyshould there be?  If I design one for Joe, will it also work for Mary?  Tohelp design 
such devices, researchers have used computer models of thethorax to simulate various 
configurations of electrodes and stimulationpulses and visualize the results using the 
SCIRun problem solvingenvironment (see www.sci.utah.edu <http://www.sci.utah.edu> 
for details).With SCIRun, engineers are able to imagine improvements to a device, 
andplace them directly into the computer model.  They will be able to test thenew devices 
using the computer prior to animal and/or human trials, thusincreasing the safety of the 
device.  The use of interactive scientificvisualization and simulation has been pervasive 
throughout this project andis opening up new ways of perceiving and investigating the 
complexities ofphysiologic systems.  In addition, engineers can monitor 
patients(perspective candidates of such devices) and dynamically inject patientmonitoring 
data into the simulation to further optimize and customize thedesign.  When implanted 
into the patient the device uses monitoring dataand to calculate and adjust the voltage, 
the frequency and the shape of theelectric shock, depending on the instantaneous 
response of the patient. 
 

 Artificial limbs 
Robot assisted surgery, medical imaging. A haptic device translates the surgeons actions 
to motions inside a remote patients body or in a simulated surgery. This capability can be 
potentially used to train surgeons in complex procedures, remotely perform surgical 
procedures and be used in microsurgery. This application requires integration of data 
from the sensors on the robotic device with the physiological model of the patients body 
in real time. The ability to  visualize the effects of the surgeons actions in a simulated 
environment is extremely important in order to reduce in-process errors. 
 
 Link expensive data acquisition devices (e.g., high resolution microscopes); compare 
real data with simulation data and database  information 
 

 
    


